Questi problemi consistono nel ripartire un numero in parti proporzionali a più numeri dati; la somma delle parti ottenute deve essere uguale al numero dato.
La proporzionalità può essere diretta o inversa, per cui si distinguono problemi di ripartizione semplice diretta e di ripartizione semplice inversa.
RIPARTIZIONE SEMPLICE INVERSA
PROBLEMA 1
Tre cugini ricevono in regalo 141 euro con la raccomandazione di dividerli in parti inversamente proporzionali alle loro età che sono 3, 4, 5 anni. Quanto riceverà ciascuno?
Indicando con x, y, z le tre parti di 141 che sono inversamente proporzionali all’età dei ragazzi, sapendo che il prodotto di due valori corrispondenti di grandezze inversamente proporzionali è costante, si ha x·3= y·4= z·5, possiamo anche scrivere x:x:
Abbiamo così trasformato la proporzionalità inversa in proporzionalità diretta. Applicando la proprietà del comporre e sapendo che x + y + z = 141 e
otteniamo:
x = 60 euro y = 45 euro z = 36 euro
La somma dei tre numeri trovati deve essere uguale a 141, infatti (60 + 45 + 36) =141 euro
PROBLEMA 2
Come premio di consolazione per Nata, Paolo e Martina, i bimbi più piccoli che non hanno potuto partecipare a una gara, viene distribuito il contenuto di un pacchetto di caramelle in misura inversamente proporzionale alla loro età, che è rispettivamente di 2, 3 e 5 anni. Se le caramelle sono 62 in tutto, quante ne riceverà ciascuno?
Indicando con x, y, z le caramelle che sono inversamente proporzionali all’età dei bambini, vale l’uguaglianza:
x·2=y·3=z·5 questi prodotti possono essere scritti in forma di divisione
Applichiamo la proprietà dell’uguaglianza di più rapporti e otteniamo
Sapendo che il numero totale x+ y+z di caramelle è 62, possiamo scrivere le tre proporzioni
x =30 y = 20 z= 12
A Nata spettano 30 caramelle , a Paolo 20, a Martina 12.
PROBLEMA 3
Dividi il numero 41 300 in parti inversamente proporzionali ai numeri 5, 8, 6.
Indichiamo con x, y e z le parti proporzionali. Utilizzando le frazioni reciproche dei numeri dati, scriviamo un’uguaglianza di tre rapporti.
Applichiamo la proprietà dell’uguaglianza di più rapporti per ottenere la somma x + y + z all’antecedente.
Calcoliamo il primo conseguente.
Poichè sappiamo che x + y + z = 41 300, sostituiamo 41 300 a x + y + z nella proporzione
Ricaviamo una proporzione con l’incognita x, che calcoliamo.
→
Analogamente, possiamo calcolare la y.
→
Calcoliamo infine il valore di z.
→
PROBLEMA 4
Suddividi il numero 756 in parti inversamente proporzionali ai numeri 2\3 , 4 e 1\5.
Indichiamo con x, y e z le parti proporzionali. Utilizzando le frazioni reciproche dei numeri dati, scriviamo un’uguaglianza di tre rapporti.
e x + y + z = 756
Applichiamo la proprietà dell’uguaglianza di più rapporti per ottenere la somma x + y + z all’antecedente.
Risolvendo si ottiene:
PROBLEMA 5
Tre impiegati ricevono a fine anno un premio di 2 600 euro da suddividere in parti inversamente proporzionali alle assenze fatte. Se tali assenze sono state rispettivamente 5, 6 e 15 giorni, quanto riceve ciascuno di essi?
Dati
x , y, z sono inversamente proporzionali ai numeri 5, 6, 15
Incognite
x = somma spettante al primo impiegato
y = somma spettante al secondo impiegato
z = somma spettante al terzo impiegato
Svolgimento
x + y + z = 2 600 risolvendo:
Quindi sostituendo i dati conosciuti:
Verifica
x + y + z = 1 200 + 1 000 + 400 = 2 600