Se consideriamo una retta generica r di equazione ax + by +c  e un punto P (equazione; equazione) esterno a tale retta, la distanza dal punto P alla retta è la misura della perpendicolare PH condotta da P alla retta.

Per calcolare la misura di PH si deve conoscere prima di tutto l’equazione della retta passante per P e perpendicolare a r. Si devono poi conoscere le coordinate del punto H, che è l’intersezione delle due rette. Infine, si calcola la lunghezza di PH con la distanza tra due punti.

Applicando tutti questi passaggi si ottiene la seguente regola:

equazione

Si usa il valore assoluto perchè una distanza deve essere sempre positiva. equazione e equazione sono le coordinate del punto e a, b e c sono i coefficienti della retta.

Consideriamo un esempio per capire meglio.

Calcoliamo la distanza dal punto P (3; -2) dalla retta di equazione 2x – y + 1 =0

Quindi ricapitolando i dati che conosciamo abbiamo:

equazione = 3;  equazione= -2;  a = 2;  b= -1;  c= 1

applicando la formula sopra scritta otteniamo:

equazione

 

Programma di matematica secondo superiore

Programma matematica terzo superiore