Se le radici dell’equazione di secondo grado sono reali e quindi il discriminante, cioè il delta, è positivo o nullo, si possono determinare i segni delle radici senza risolvere l’equazione con la regola di Cartesio.

Prima di tutto dobbiamo introdurre un nuovo termine che è la permanenza e si riferisce quando si susseguono due coefficienti dello stesso segno, ovviamente in  un’equazione ordinata, se vi sono due coefficienti di segno contrario si dice che vi è una variazione.

Possiamo dire che il coefficiente della è sempre positivo, perchè se così non fosse , lo si renderebbe tale cambiando il segno a tutti i termini dell’equazione.

I casi che si possono verificare sono quattro:

a                     b                    c
1° CASO +                     +                     + 2 PERMANENZE
2° CASO +                     –                      + 2 VARIAZIONI
3° CASO +                     +                      – 1 PERMANENZA E 1 VARIAZIONE 
4°CASO +                      –                      – 1 VARIAZIONE E UNA PERMANENZA

1° CASO

Se andiamo a considerare  la somma e il prodotto delle radici  abbiamo:

equazioneequazione = c\a il prodotto è positivo quindi le due radici sono concordi.

equazione+equazione = – b\a la somma è negativa quindi le due radici sono entrambe negative.

In conclusione le radici sono entrambe negative.

Esempio: x²+3x+2 =0  il cui Δ>0  le soluzioni sono (-2; -1)

 

2° CASO

equazioneequazione = c\a il prodotto è positivo quindi le radici sono concordi.

equazione+equazione = – b\a la somma è positiva e le radici sono positive.

In conclusione le radici sono entrambe positive

Esempio: 2x² – 3x + 1  il cui Δ>0 . Le soluzioni infatti sono (1;  1\2)

3° CASO

equazioneequazione= c\a il prodotto è negativo e quindi le radici sono discordi.

equazione+equazione= – b\a la somma è negativa quindi la radice negativa in valore assoluto è maggiore della soluzione positiva .

Le radici sono una positiva e l’altra negativa

Esempio: 8x²+10x -7=0 le soluzioni sono (- 7\4; 1\2) quindi   | -7\4 |> 1\2

4° CASO

equazioneequazione= c\a il prodotto è negativo e quindi le radici sono discordi.

equazione+equazione = – b\a la somma è positiva e perciò la soluzione positiva , ha valore assoluto maggiore della soluzione positiva .

Le radici sono una positiva e l’altra negativa.

Esempio: 5x²-8x-4=0 le soluzioni sono (2; – 2\5) in valore assoluto 2 >| – 2\5 |

 

Programma di matematica secondo superiore